
PHM U.S..S.R.,Vo1.48,No.2,pp.l84-191,1984 GC21-8928/84 Si~.oo+c.oo 
Printed in Great Britain Q1985 Pergamon Press Lr.3. 

THE LINEAR PROBLEM OF A VIBRATOR PERFORMING HARMONIC OSCIl_LATIONS AT 
SUPERCRITICAL FREQUENCIES IN A SUBSONIC BOUNDARY LAYER* 

The flow of a subsonic stream over a flat plate with a triangular vibrator 
fixed to it is studied. The vibrator begins to oscillate in the unperturbed 
boundary layer. The plate and vibrator are assumed to be heat insulated, 
and the vibrator dimensions are such that the flow can be defined by 
equations of the boundary layer with selfinduced pressure. The amplitude 
is assumed to be small, which enables these equations to be linearized. 
The Fourier and Laplace transformations respectively are used for the 
construction with respect to the longitudinal coordinate and time. Inverse 
transformations are investigated only for fixed values of the longitudinal 
coordinate and time approaching infinity. The amplitude of the pressure 
oscillations, which depends on the longitudinal coordinate, is obtained. 
When the vibrator oscillation frequency o,, is less than the critical 
value eI, the amplitude is damped both up- and downstream, when wg= oO. 
it is damped upstream and not damped downstream, and when o,>o, it is 
damped upstream and increases downstream. As the distance from the 
vibrator increases the perturbations degenerate into a Tollmien-Schlichting 
wave whose amplitude depends on the vibrator oscillation frequency. 

Consider the flow over a heat-insulated body consisting of a plate at rest, a section of 
which contains a vibrator and oscillates, and the remaining section of which is at rest. Let 
the forward part be of length L* and the rear part of length O(L*) (the asterisk 
superscript denotes dimensional quantities). Let the unperturbed stream be subsonic 
with a Mach number hz4ca less than unity by a finite quantity and with velocity V,* 
directed along stationary parts of the body. The subscripts 00 and zudenote the parameters 
of gas in the steady unperturbed stream and on the body. We will use a Cartesian system of 
coordinates x and y with the origin at the junction point of the forward fixed part with the 
vibrator. We denote the time by t*, the velocity vector components by v,*and z+,*, thedensity 

by P*‘ the pressure by ,p*, the temperature by T*, and the ratio of the specific heats by 
For simplicity we will assume the dependence of the first coefficient of viscosity on tempera- 
ture to be locally linear (for T* N Tw*); hli&,* = CT’, where T’ = T*?T,*, and the Prandtl 

number to be unity. Instead of the inverse value of the Reynolds number we will use the small 

parameter 15 = Rei"' (Re, = pm*V,*L+/hl,*). 
We select 0(L*c3) for the longitudinal dimension of the ,vibrator, 0(L*s5) for the oscil- 

lation amplitude, and O (V,*lL+e’) for the frequency. To define the motion produced by such a 
vibrator it is convenient to separate three characteristic regions /I, 2/: the upper or external 
region of the subsonic inviscid stream{y *=O (k*es)),the middle region of the ordinary boundary 
layer&* = O(L*s?))and the lower region of the boundary layer with selfinduced pressure (y* = 
0 (LW)). The difficulties of such schemes are basically related to the construction of a 
solution in the lower region. The flow parameters in the middle and upper regions can be 
written in explicit form /3, 41. 

Below, we shall deal only with the lower region. We introduce dimensionless dependent 
and independent variables indicated in /3, 4/, and use the notation described above for all 

quantities, except the velocity components, omitting the asterisk. The dimensionless longi- 
tudinal velocity will be denoted by u and the transverse velocity by Y. By requiring 'ihat 

the conditions of merging with the conventional boundary layer should be satisfied as 

r* --oo and y+m, we obtain from the Navier-Stokes equations for the principal terms of 

the expansion as s-+0 a system of equations for the unsteady subsonic boundary layer with 

selfinduced pressure /3, 4/. 
We specify the vibrator law of motion and its form for t>o 

y, = of (t, 5) = of1 (r) sin o,t, u * 1, a0 > 0 (2) 
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where o. is the dimensionless frequency, and function f~(X) defines a triangular form with 

parameters a and b (fl(x)=O when x <0,2x when 0 <X Q b, 2b(a- ~)/(a - b) when b <Z <'a, 
and 0 when x >a). For the instants of time t<O we set y, = 0, and assume that the boundary 

layer is unperturbed. 
The smallness of the parameter o enables us to expand the solution sought in series in 

powers of that parameter 

u = Y + @I&l + * * ., v = aq f . . . . p = ups + I.. 

Then the equations for the functions introduced will be linear 

(2) 

The conditions of interaction with the external stream give the 

pla= y-+m I OD 
&,, PI& II) 

q--lo 
-a -0D 

The conditions of adhesion to the body , if only principal terms 

t > 0: Ul (t, 2, 0) = -f, (2) sin o& q (5, 5, 0) = 

A (4 00 cos wet 

Since the oscillations begin in the unperturbed boundary Layer, 

111 (0% G Y) = VI (0, 5, Y) = p1 (0, 4 = 0 

connection between u1 and 

(3) 

are retained are 

(4) 

we have 

(5) 

We shall seek a solution that has the following properties. For any finite r> 0 and 
z+fm the unknown functions approach zero , and the integrals of the aboslute values of 

these functions exist, and when x is finite and as t +oo the unknown functions increase at 
a rate not greater than the exponential. The solution of problem (2)-(5) can then be sought 
by expanding it in a Fourier integral in the variable x and in a Laplace integral in the 
variable t 

&to, k, Y) = 
+ 

* ss u1 (t, x, y) e-~“-“wxdt, Rem > lo > 0 
0 -0D 

The problem of a vibrator oscillating for an infinitely long time in a subsonic boundary 
layer was considered in /5/. Becuase the motion investigated there was, for all x, already 
in a stable oscillation mode, the range of frequencies had to be limited oe<eO*, where 

009 =2.298 is the critical frequency predicted by the theory of stability. For supercritical 
frequencies o,> es* in a formulation similar to that in /5/, a postulate was introduced in 
/6/ which stipulated the addition to the formal solution, which defines the oscil;ations of 
the whole plate limited with respect to amplitude , of a term that increases exponentially 
downstream. The postulate is based on the requirement of continuity of the solution on passing 
through the critical frequency, and on the experimental observation that no upstream propaga- 
tion of strong perturbations occurs. There is no indication in the formulation (2)-(5) that 
a steady mode is reached in time for all x. That mode is reached for finite x as r-oo.This 
formulation enables the oscillations to be studied when o,>oo,. It is not possible to use the 
Fourier transformation with respect to the variable t to derive the solution of (2)-(5) , as 
was done in IS/, instead the Laplace transform (6) is required here. 

Eliminating r1and p, from (2) and passing from z.+ to &, we obtain 

Fit, -.-=(o+iky)) w 
The solution of this equation that satisfies the condition of boundedness of fil as y-00 

has the form 

-$ = B(o, k) Ai](&) y + o(ik)-'/*] 

where Ai is the Airy function /7/, aqi = n/2, and B(o, k) is an arbitrary function of its 
arguments. The limit condition (3) and the boundary condition (4) enable us to express B(o,il-) 
in terms of the function p(o, k) and determine &(o, k), where f and p1 are the functions 
f(t.s) and pl(t,r) from (1) transformed by (5). We have 
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m 

a= CO (ik)“‘*, *lo = 
s 

Ai (x) dx = -$-, II (62) = f Ai (2) & 

Q (a, k) = -Ai’ (Sly + (ik)‘l* 1 k 1 [I, - II (Q)] ’ 

-ilb + a f_ b @fa 
i 

where a prime denotes the derivative of the Airy function. 
Let us calculate the pressure. An expression for p1is found by using the inverse Fourier 

and Laplace transforms 

To separate the single-valued branches in the integrands in (7) we make a cut in the 
complex.plane from the point 0 along the imaginary axis and select $2> arg k > -3x/2. 

The subdivision of the integral of k in (7) into Iz and IS is connected with the fact 
that in Ia as well as in IS the integrands are analytic functions. Equating to zero the 

expressions for Qa and Qs which appear in the denominators of 1,and I,, we obtain the dispers- 
ion relations for the subsonic boundary layer that were investigated in detail in /8/. The 
connection between o and k defined by these relations differ substantially from the relation 
defined by the dispersion relation in the supersonic boundary layer /4, 9/. Thus, while for 
the external subsonic flow the dispersion relation has a root o that passes from the left half- 
plane to the right half-plane, when k varies along the real axis, there are no such roots for 
the supersonic flow. It is precisely this root that determines the appearance of perturbations 
whose amplitude increases in the downstream direction. 

When investigating p1 in (7), we first consider the integral I,. Ue separate its inner 
part, i.e. the integral of o, denoting it by J,, and investigate the roots of the denominator 
of integrand J, in the complex plane o, as k varies along the negative part of the real axis. 
Using the results of /8/, we plot the trajectories of the first three roots of the dispersion 
equation Q, = 0 in Fig.1, denoting them by the numbers 1, 2, 3. All the remaining roMs of 
the dispersion equation lie in the second quadrant. 

For all roots, beginning with the second, the inequality 

n > arg wan (k) > O.S56n, 

is satisfied. 
n = 2,3, . . . 

Besides these roots, there are two more roots io,,and --ioa that 
are independent of k. The trajectory of the first root intersects 
the imaginary axis at the point iooS. The case of oO> @es is shown 

in Fig-l. Let us transform the integral Jz. For this we deduct from 
and add to it the expression related to the first root of the disper- 
sion equation 0~1 (k). We have 

I-+&G 

Ja - Jto + JZI, Jno = 
s 

WI (k) 
wh n,,= I 

(8) 

l-da. 
(ik) I’ 

Fig.1 

This representation has the property that among the roots of the integrand denominator 

of @, there is no root 0 = o,,(k). The remaining roots are the same as in Z,. 

The integral Jpl can be evaluated explicitly 

i9? 
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Let us transform the integral JaO.. To do this we select, instead of the old integra- 
tion path shown in Fig.1 by the vertical dash line , a path consisting of two rays C1 and Cz 

(Fig.1). Ray 6'1 lies in the second quadrant and does not touch the pole trajectory, and ray 
C, coincides with the negative part of the real axis. Taking into account the residues 

at points io0 and -1iw(l, we obtain 

(10) 

Let us estimate the integrals along the rays Cz and Cl as t +a. Their integrands have 
a form convenient for applying the Laplace lemma on asymptotic estimates of integrals, in 
accordance with which the basic contribution to the integration is made by the small neighbour- 
hood of the point 0. Then, using the boundedness of /(I, -~1(Q),/Ai'(B)~ when o varies along 

the integration path, and integrating with respect to k, we find that the contribution to the 
pressure p1 is O(P) as t +m. Hate that the estimate obtained is independent of x. 
Writing the integral of Jz taken with respect to k as t +a, we obtain 

(11) 

Formula (11) shows that for t>f the problem of determining the pressure for allvalues 
of x reduces to a single integral over k. Various problems may be considered here, for example, 
the determination of the velocity of motion of maximum amplitude, or problems of calculating 
the pressure along the whole of a straight line. Below, we consider the problem of reaching 
a stable oscillation mode for limited values of x. The need to introduce the additional 
quantity o.- ioO in the denominator of the additional term in, @, from (8) now 
becomes clear. Instead of o- lo0 we can use for wo.# oo* the simpler expression au(k)- 
ioo. This cannot, however, be done for op = o@+, since for k = k,, = -i.ClO% the additional 

quantity would become infinite. Note that since when .oo# og* none of the terms in brackets 
in Jal in (9) and in res@,,(ioO) in (10) has a singularity along the integration path, before 
evaluating the integrals, the expressions proportional to eia*1 can be cancelled. 

When w = oO+ the expressions for Jel and res@,(i& have no singularities at the 
point k = k,, but among the two terms appearing in J21, as well as in res @% (io,) each 
infinitely increases as k+k,. %?e bypass the point k, along the arc of a small circle whose 
location is unimportant, since the point k, is regular. But if the integration path does 
not contain the point k,, the terms proportional to eicont can be cancelled along it. For 
the remaining terms we now obtain the rule of bypassing the point k,: in both integrals in 
(11) the bypass must be carried out on one and the same side of the point k,. We shall do 
so from below. In view of the above, the symbol rss @S(iog) will be taken as containing only 
the first term shown in formula (10). 

Let us consider the second integral in (111, and in view of the above remark 

(12) 

The roots k,l(oo) lying in the left half-plane of the equation 0~1~ (k)+ coo* = 0 are 
shown in Fig.2 for 00 varying from 0 to 00. When o0 = 08* the equation has the root k =kow 

We pass now in the integral in (121 to the new integration path C,. Computer calcula- 
tions showed that the path Cs may be selected below the trajectory k = k2l(w2) (Fig-Z); then, 
for points 12 EC, the following relations are satisfied: when Ik 1 --*IQ) argk +-._7#j, agl _,. 

ikZ, and (Re 0~1 (k&,=X = 0 when k = 0, where the subscript max denotes the maximum value of 
the quantity. 

As a result, we represent the integral (12) in the form 

121 = sO2dk - 2ni resh (kd 9 (coo - oole), k2, = kg1 (02) (13) 
C. 

resU& f&1) = -xk2171(& Ai' (Qxo (kz,)) I&x (R1o (kn1). k2z)j'x 
esp (fk21z i icod), Q2k = (~Q2/~k~~, Sz,, (k,,) = i%oek2,-*'~ 



188 

where 8(00 - o,,,) .is the Heaviside function, and when o0 = oO* there is no term containing 
res @,,(k,,), since the point k?, in the input integral (12) is bypassed from below. The 

Fig.2 Fig.3 

1 2 S Ikt 
0 

dependence of Re ozl (k) on Ik 1 is shown in Fig.3 for k varying along the path C,. Since 
Re mu(k) reaches its maximum when k = 0, the basic contribution to the integral along C3 

when t+m is provided by the neighbourhood of the point k = 0. Using the form of inte- 
grand as k +O, we obtain 

s ‘hdk = 0 (r”) 
C. 

(14) 

Note that the estimate (14) holds only for I< t (Re a2 (k)/Imk),,. 
Let us now consider the integral I,. For this we apply to the inner integral with 

respect to o a transformation similar to that in (8), namely adding and subtracting the expres- 
sion 

Ai’ (CM P‘ 
[%l(k) - ko01 Q3_ (‘&I, 4 IO-~- iwHo -on WI ’ 

where o = oal (k) is the first root of the dispersion equation QJ = 0. It can be shown that 
the trajectories of all roots of the equation Q3 = 0 in the plane o when k varies along 
the positive semiaxis, can be obtained from the trajectories of the roots Q2=0, when k 
varies along the negative semiaxis, by symmetric reflection of the latter in the axis Im w = 0. 
we can, then, write for I, a formula similar to (11) for the integral 1,. As the result we 
have 

I 3 = Bni% f kf1 (k) e*kr[regQ (- iw,,) + rss@K(&)]dk + 00 ~kf,(k)~ikXJ3& + Ott") 
0 0 

(15) 

res@(- ia)= 
Ai’ (- 3,) 

+ 
Ai’ 62~) 

2 %icr& (- Sb, k) lu$ (k) + Ml Qsu Ph. 4 1 X 

J31= Bni Ai’ (%I) 

b$ (‘4 + ~‘1 Q3, WSI, 4 

(@4k)f _ ,+d) 

We cancel out in resQ3(-io,) and J,, terms proportional to @uht , and when 00 = o* 

we bypass the point k,, = 1.oo05 from below both in the first and in the second integral. 
The symbol res0,,(- ioa) will be understood to contain only the first term given in 

formula (15). Passing in the second integral in (15) to integration along the ray C4 lying 
below the trajectories k = k,l(oo), where 0~1 (k,,)= -io,, and has properties similar to those 

of path C,, we obtain 

131 = S~,,ldk-Z2nires~,(k~:31)e(00-0g~). h-31 =&I (00) (16) 

res UJ: (k3d = nkd~ (M Ai' (--QIO (kd) X 

[QSk (-SAo @,A kdl-* exp (ht + i@(t) 

Qak = (aQJW,o, SZla (k,,) = i’$,kS1+ 

There is not term with res Q3, (k3*) when o. = mO*, sincethebypassingof the point k,, in 

(15) is carried out below it. Since the dependence of Re oKl (k) on Ik / when k varies along 

path C, is the same as the dependence Re oK1 (k) along the ray C3 (Fig.3) when k varies, if & 

is selected to be synsnetric to C,about the imaginary axis, then the main contribution as 

t d~ is provided by the nefghbourhood of the point k = 0. Using the expansion of the in- 

tegrand of O)31 as k -0, we obtain 



,S. Q&Ii = 0 (t-“) 

Estimate (17) holds for z< t(He oS1 (k)/lmk),,,. Let us determine the sum 

consequently in conformity with (7) also the pressure ~~as t-+00, using (11) 

also (13) and (16) and the estimates (14) and (17). 
First, we collect the terms without integrals which appear only when N> 

tion of these terms to the pressure is denoted by p,, 
Plr = _2-'l'n'il (r= $1 (k,l) + I‘ca @,, (k,,)) 

The analysis of the equations %I (k,,) = ioO and o.~(!:) = -io, enables us to 

where the 
From 

k,, = / I;,, 1 exp (--i arg (k,,) - in) = -(k,,), 

symbol (...), denotes the complex conjugate. 
the last formula we obtain the simple corollaries 

-%I @al) = (%o (k,,)),. Q.ak c--Q (k,,), k,,) = (@sk (S&,k21), k& 

res @.?I (k,,) = @es %I (k,,)),. fi (c,,) = (71 (k,,)), 

Then the expresicn for p1 takes the form 

p1, = - 2%~"' Re(res@2.1(kn)) = +Im(~,(ku) @is) eosoOL + 

+ Re(B1(k,l)eik"X)sin od 

B,(kn) = - 3ne”/3k;f” I- A e-' 
( 

b ‘hb + _ -ik.,a 
a-b 

e 
)X 

Ai' (S&O (&x)) 12 (10 - 11 (%I W)) + GO (W (1 - o&&) Ai (%o) (Wlel 
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(17) 

1, -I- Ia, and 

and (15) and 

oo,the contribu- 

prove that 

(18) 

(19) 

We collect the integral terms in I,+], that have no singularities in their integrands 
when (00. = %r. Their contribution to the pressure is denoted by pm 

0 

P In = 2-‘l’n-‘l’ 00 is k& (k) e ik= res Cpz (- ioo) dk + r k& (k) eikX res UJS (to,) dk 1 (20) 
--.?a 0 

In the first inegral in (20) we make the substitution k= k,emix, and using transformations 
similar to transformations (18), obtain 

i 
kTl (k) eikrees O1 (- i@ dk = 

-0D 
(~k?~(k)eikSm@s(iq,)dk)c 

As a result, the expression for *I* takes the form 

P ,,=~Lbn-‘h~~Re(~kj,(k)cihx,?*~(i,dk)= 
0 

(21) 

@,= 

,ikX 

-~(i--& e-ikb+~"ka)Ai'(n,)!Q~(~~.k) 

We now collect the integral terms in I, -+ I, with singularities in their integrands 
when o0 = a,,.. Their contribution to the pressure is 

0 
PI, = 2-'W~~o, 

H 
k?l (k) eikx (22) 

-cc 
res 0, (imp) dk +fkTl (k) eikx res @8(-i@ dk] 

0 

The bypassing of the singular points k= fl.0005 when 00 = 00. occurs from below in the 
first and second integral. Making the change of variables k= k, exp (-2iarg k, - in) in the second 
integral in (22) and using transformations similar to (18), we obtain 

0 

PlS = 2'/'n+ o. Re (s k& (k) cik= res Q)* (io,) dk = (23) 
-0D 

O,= 

Ciks 

-k (1 -se 
-ikb +-& e-ik")Ai'(n,)iQ: (90, k) 

Collecting the results obtained in (19), (21), and (23), we write the expression for the 
pressure as 1-m 

Pl = Pm -f- PI8 + PI4 (%I - %*) 
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(“4) 

Thus the pressure can be written in the form 

The quantity 0 appearing in the expression for U? is connected with Q1 and Q3 by (7;. 
Note that expression (24) for the pressure when we< (LtO+ is the same as the expression for 
the pressure appearing in /S/ (of course, taking into account that the time t, in /5/ is 
related to the time t by the formula t = t, + $‘ZQQ). The quantity plT should not be taken into 
account, when 00 = Ok+, however, since the integral @, bypasses the point k = kse from below, 
then according to /5/ the following representation holds: 

When 08>00* the pole of the function @ passes into the lower half-plane /5/, then 
for large values of f xi, for the integral of #the representation 

m 

s>*. s 
ak=O(+-); x%--l, T @,dh-_ 

-m -_ 

holds. 
- Bl (k,,) eik*m + 0 ($) 

Now, taking into account the expression for Plrt we obtain for i#, 

S> 1, tDp = Bi(k~r) eik*l= +o(-$-); x<-1, +o(&) (26) 

The calculation of the pressure p1 based on formula (24) is described in /5/. Curves of 
the pressure for frequencies o. = 2, o0 = mar=. 2.298, and o0 = 2.5 for instants of time t = 

2s(N + '/,)f;fuo and vibrator parameters Q= 2, b= 1 are shown in Fig.4. It follows from form- 
ulas (25) and (261 and these curves that perturbations propagate upstream only insignificantly. 

The perturbations that drift downstream with subcritical 

P( frequencies decrease as x incxeases, when the frequency 
is critical, their amplitude is independent of x, and 

0.5 is determined by the coefficient B1(k,,), and when the 
frequencies are supercritical, the perturbations increase 

0 P 
exponentially as given by (26). We note in conclusion 
that the postulate introduced in /6/ is in-complete 
agreement with (24). 
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THE EFFECTIVE THEMlAL CONDUCTIVITY OF A SUSPENSION* 

A.M. GOLOVIN and V.E. CHIZHOV 

The effective thermal conductivity of an inhOmOgeneOUS suspension is 
considered for the case of low and moderate volume densities of randomly 
distributed spherical particles. Amathematicalapparatus of convolutions 
of the A-functions is developed enabling closed formulas to be derived for 
the dipole moment of a particle in the system. An exact expression for 
the dipole moment averaged over the ensemble that is accurate to terms 
of the order of the square of the particle density is given for a spatially 
homogeneous distribution of particles. The effective thermal conductivity 
of the suspension is calculated to the same approximation. It is shown 
that when the region occupied by the spherical particles represents an 
ellipsoid of revolution and the temperature gradient away from this 
region tends to a given constant value, the effective thermal conductivity 
becomes independent of the ratio of the ellipsoid semiaxes, i.e. independ- 
ent of the form of the region occupied by the system. 

The effective thermal conductivity of a homogeneous suspension was studied earlier in 
/l--l/. Maxwell calculated the effective electrical conductivity of a mixture to terms of 
the order of the volume concentration of the spherical inclusions. The effective thermal 
conductivity is easily calculated to the same approximation, since the problems of determining 
the thermal and electrical conductivity are mathematically equivalent. The same problem is 
encountered in computing the dielectric permeability of two-phase mixtures ,f8/ and in determin- 
ing the effective shear modulus of a homogeneous and isotropic composite material /9, lo/. 

A cell model was used in /2-5/to compute the effective thermal and electrical conduct- 
ivity of suspensions at moderate and high particle densities. It was assumed that the particle 
was situated at the centre of a spherical cell, and the medium outside it possessed the 
required effective thermal conductivity. The drawback of this method lies in the arbitrariness 
of the choice of the cell boundary. A method of calculating the effective thermal conductivity 
of the media with spherical inclusions situated at the.nodes of various types of cubic lattices 
at moderate particle densities was given in /6/, where a review of the earlier investigations 
concerned with computing the thermal conductivity in analogous media at low volume densities 
was also given. The effective thermalconductivityofahomogeneous suspension with randomly 
distributed particles was calculated to terms of the order of the square of the particle 
density in /7/, using the method given earlier in /ll/. 

1. Formdation of the problem. Let a region of volume V containing N identical 
spherical particles of constant thermal conductivity x'#% exist in an infinite medium filled 
with a material of constant thermal conductivity x. We assume thtlt away from V a steady 
temperature distribution is given with constant gradient k. The temperature field T will 
depend, at any point I, on the position of the particle centres determined by the radius 
vectors r:1, . . ., rN. We shall denote the complete set of these radius vectors by RN. We will 
introduce an unconditional correlation function fN(RN) such that 

denotes the probability of finding the particle centres , respectively, within the small volumes 

dsr,, . . ., hr, beside the points rl,.+ ,,rN. 
f,v_, (R_v_~; r~.) defined in such a manner that 

We introduce the conditional correlation function 

+y fN--l (&-1; rN) d&--I 
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